TakeBooks.com TakeBooks.com TakeBooks.com
TakeBooks.com
TakeBooks.com
  Каталог> Знания и навыки> Компьютерная литература>

Базы данных

> 9781119146827
TakeBooks.com
TakeBooks.com
 Каталог
:: Java книги
:: Авто
:: Астрология
:: Аудио книги
:: Биографии и Мемуары
:: В мире животных
:: Гуманитарные и общественные науки
:: Детские книги
:: Для взрослых
:: Для детей
:: Дом, дача
:: Журналы
:: Зарубежная литература
:: Знания и навыки
   :Бизнес-книги
   :Компьютерная литература
     :Базы данных
     :Зарубежная компьютерная литература
     :Интернет
     :Информационная безопасность
     :Книги о компьютерах
     :Компьютерное железо
     :Ос и сети
     :Программирование
     :Программы
   :Научно-популярная литература
   :Словари, справочники
   :Учебная и научная литература
:: Издательские решения
:: Искусство
:: История
:: Компьютеры
:: Кулинария
:: Культура
:: Легкое чтение
:: Медицина и человек
:: Менеджмент
:: Наука и образование
:: Оружие
:: Программирование
:: Психология
:: Психология, мотивация
:: Публицистика и периодические издания
:: Разное
:: Религия
:: Родителям
:: Серьезное чтение
:: Спорт
:: Спорт, здоровье, красота
:: Справочники
:: Техника и конструкции
:: Учебная и научная литература
:: Фен-Шуй
:: Философия
:: Хобби, досуг
:: Художественная лит-ра
:: Эзотерика
:: Экономика и финансы
:: Энциклопедии
:: Юриспруденция и право
:: Языки
 Новинки
Engines Cummins L10, service e-manual
Engines Cummins L10, service e-manual
 
 

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques. A Guide to Data Science for Fraud Detection

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques. A Guide to Data Science for Fraud Detection
Автор: Bart Baesens
Издательство: John Wiley & Sons Limited
Cтраниц: 1
Формат: PDF
Размер: 0
ISBN: 9781119146827
Качество: excellent
Язык: 
Описание:
Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

NEAR Wallet
Просмотров: 77

Пресс - релиз

string(4) "true" int(166)
К настоящему времени нет отзывов!
Вход 
Если Вы забыли пароль, щелкните здесь





Вы новый клиент?
Зарегистрируйтесь
 
 Информация 
Свяжитесь с нами
Как скачать и чем читать
  Quiero dinero © 2007